Chapter 8 on Abstract Groups

Abstract mathematical groups are everywhere in mathematics. A central, fundamental, mathematical abstraction, groups arise irresistibly in number theory, linear algebra, differential equations, algebraic topology, and differential geometry. Where there are symmetries, transformations, and invariants, there are mathematical groups. Where there is measurement, there are groups. Whenever one changes one’s choice of measurement units or system of coordinates, a mathematical group lurks in the background. An axis of measurement is an identified symmetry.

Groups are abstract, their study is difficult, and their key concepts require more motivation than they generally receive. Within the curriculum, groups arise, at least implicitly in treatments of linear transformations and matrices, but a more systematic study is for math majors and the important and fascinating study of group representations is a specialized topic for graduate students.

But, given an understanding of Chapter 7, the central concepts and motivation of group theory can be understood and appreciated without such specialized detail study. And so the purpose of Chapter 8 is to answer such questions as:

  • How do mathematical groups relate to measurement?
  • How do group-theoretic concepts relate to the world?
  • What kinds of questions have driven the development of group theory?
  • What motivates the transition from transformation groups to abstract groups?

Chapter 8 starts with a very simple concrete example and uses it to develop basic concepts of group theory and group representations, showing how such concepts arise even in the simplest of examples. Continuing the example as a central reference point, the chapter ends with a conceptual introduction to group representations that explains its importance and key concepts.

Advertisements

Chapter 7 on Vector Spaces

Linear algebra, the study of vector spaces and linear transformations or matrices, began as the study of simultaneous linear equations. It is indispensable for its applications to physics and engineering and a necessary foundation for mathematical studies beyond the calculus. For many, a class in linear algebra is a first encounter with a more abstract approach to mathematics.

The implicit concept of a vector as a directional quantity dates back at least to Archimedes in his treatment of buoyancy and his celebrated law of levers. The study of simultaneous equations, still the core of linear algebra, is even older, dating back to the Babylonians, 4000 years ago. Yet these ideas were not fully integrated until the 19th century and the first formal definition of a vector space was finally provided by Peano in 1888.

Linear algebra, the subject of Chapter 7, provides an ideal case study for a number of reasons. First, it is advanced, college level, mathematics, but not too advanced. It is the first mathematical topic that a mathematics or science major generally encounters after calculus, less specialized, for example, than differential equations. Linear algebra is abstract, but not too abstract. It can be pursued on a very concrete level, but, for that very reason, it can be used to illustrate the value and power of mathematical abstraction.

Secondly, linear algebra illustrates the interplay between the geometric and measurement perspectives in mathematics. This is particularly evident in the relationship between linear transformations (a geometric perspective) and their coordinate expressions as matrices (a system of measurements). Abstract arguments in linear algebra generally involve the geometric perspective for which the choice of a coordinate system (or a set of “basis” vectors) is treated as an omitted measurement.

The measurement-omission principle also provides an illuminating perspective on so-called “quotient vector spaces.” The idea of an algebraic quotient is wider than the concept of a quotient vector space and has fundamental importance in higher mathematics. But the same underlying principle, that of measurement omission, is always involved and it appears most transparently in the study of vector spaces.

Finally, vector spaces illustrate the transition from the concrete to a more abstract perspective. On a concrete level, the space of potential spatial displacements in all directions is obviously different from the set of quadratic polynomials with real coefficients. Yet they are both three dimensional vector spaces that can be put into an exact correspondence; any argument concerning three dimensional vector spaces applies equally to both. To thus focus on mathematical structure is to treat the specific referents of each vector space as structurally irrelevant, as omitted measurements.

Vector spaces and matrices are a conceptual underpinning of our civilization. Chapter 7 highlights the value and nature of mathematical abstraction, the interrelationships between the geometric and measurement perspectives, and the illumination provided by Ayn Rand’s measurement-omission principle.

Chapter 6 on Set Theory Part I

This is a first posting on Chapter 6; there may be others.

Mathematics is not about sets; it is about measurement of the world. But this book needs to assess set theory because:

  • Set theory is common currency in mathematics. It is presupposed and taken for granted in all advanced mathematical writings since the early 20th century
  • It is often alleged to be the foundation of mathematics. Most attempts to find a realist approach to mathematics ultimately connect to set theoretic axioms
  • The validity of set theory in general or, at least, the formal axiomatic approach to set theory, is highly questionable in a reality-based approach.
  • If set theory is valid, or can properly be rehabilitated, a reality-based answer to the question: “What is a set?” is essential.
  • One needs to address the key question: What, properly, would be the measurement function performed by sets?
  • It is essential to assess the status of the proclaimed axioms of set theory
  • If there is a valid concept of mathematical set, it remains to assess its value. The clearest way to offer an affirmative answer is to provide a non-trivial application to something of demonstrable value

These are a lot of bases to cover and even readers sympathetic to my approach are likely to find Chapter 6 the most difficult one in the book. The chapter begins with a positive treatment of mathematical sets and only offers its critical review of formal axiomatic set theory at the end. Chapter 6 covers such topics as:

  1. What is a mathematical set? How does a set differ from a concept? In what sense is a set open-ended, like a concept? In what sense is it not open-ended? What is its proper sphere? What measurement-related function does it serve?
  2. Proper domain of set theory. Set theory as specifically applicable to mathematics. Mathematics conceptualizes the world with respect to measurement of differences. Set theory as presupposing mathematical concepts. An indication of proper hierarchy in mathematics.
  3. Sets as a) primitive measurements b) performing a function of isolation c) a perspective on distinguished objects of measurement. A reality perspective on set theoretic “constructions.” Constructions as recognitions of relationships among quantities.
  4. Point set topology as a non-trivial and important application of sets. What is the purpose of point set topology and why is it important?
  5. Axioms of set theory, context and nature of the ZF axioms and their application to mathematics. Critical comments.
  6. Why has mathematics survived? (I claim that it has.)

Chapter 5 on Geometry and Human Cognition

Geometry, from the start, was about more than plane and solid shapes. When Pythagoras arranged pepples in various shapes, he was, certainly, studying shapes, but he was also studying numbers. Two centuries later, Euclid was drawing lines, in Book VII, to illustrate the rightly celebrated Euclidean Algorithm, used, to this day, to find the greatest common divisor of a pair of numbers.

The Euclidean Algorithm is a cornerstone of number theory. But one can also apply that very algorithm to the edge and diagonal of a square, discovering, rather quickly, that the algorithm will never terminate. It cannot terminate because the two magnitudes have no “common measure.” The magnitudes are incommensurate.

Geometry, for the ancient Greeks, was a perspective and a method. And they applied both the geometric perspective and their geometric method to the entire domain of quantity.

Chapter 5, “Geometry and Human Cognition” closes the Elementary section of the book and is, by far, the shortest chapter in the book. Its purpose is to understand the pervasive role of geometry in mathematics, to indicate its scope, to distinguish and relate the geometric perspective and the measurement perspective, and to apprehend the cognitive contribution of the geometric perspective. Chapter 5 pulls together themes from the first four chapters and sets the stage for the remaining 3.

On a personal note, I have been fascinated by the role of geometry in mathematics since my undergraduate years. This chapter began life as a significantly longer essay, with the same title (never published). It contained, in embryonic form, the key underpinnings of Chapter 1, in turn, the foundational chapter of the entire book. Chapter 2 also began as a short section in that earlier essay. Chapter 3 is a continuation of Chapter 1. And the book, as a whole, grew out of an exploration of themes first introduced in the early essay, “Geometry and Human Cognition.” Yet the core of the original essay, after all the excisions, remains intact, interesting, and important, providing a coda to Part 1 before the more advanced and demanding Part 2.

Chapter 4 on Rational and Irrational Numbers


Numbers are used to measure multitudes and, derivatively, to measure or relate magnitudes. Although a comprehensive treatment of number would need to start with multitudes, the intent of Chapter 4 is to focus on the more difficult application of numbers to identify or specify a relationship between two magnitudes.

To grasp a multitude is to have identified or distinguished its unit (any one of the items comprising the multitude). The multitude, as such, has a specific numerical value to be ascertained by counting.

This is not the case when one grasps a magnitude: To measure a magnitude, it remains to specify a unit.

In either case, Chapter 4 holds that a number is an identification or specification of a relationship between two multitudes or two magnitudes of the same kind. This characterization is intended to include the case in which one relates a multitude or magnitude to a unit.

Chapter 4 treats such questions as:

  • Why do we need irrational numbers? Given that all precision is finite, how can we meaningfully distinguish irrational numbers from rational numbers?
  • Is there a systematic way to specify real numbers (i.e., rational and irrational numbers)?
  • How does the principle that all measurements have finite precision apply to the use of numbers to specify quantitative relationships?
  • What does it mean to say that a (Cauchy) sequence of numbers converges to a number?
  • What does it mean to say that the real number system is complete?
  • How should one regard the constructions by Dedekind or, respectively by Cantor, of the real number system?

Chapter 3 on Context and Implications of the Parallel Postulate

My approach to understanding Euclid, both mathematically and philosophically, is fully presented in Chapter 1. To understand Euclid’s method as abstract measurement is to understand both Euclid’s logical structure and, most critically, the way that Euclid’s geometry relates to the world.

Chapter 3 continues the discussion of Euclid’s fifth postulate. It further examines the context of the parallel postulate and explains its application to Euclid’s theory of geometric area and geometric proportion.

The 19th through the early 20th century, brought the transformation of mathematics from the science of quantity, with a Euclidean geometric base, to a formal system built on ontologically meaningless axioms. This transformation was driven by a philosophical perspective. But it transpired on a stage set by the development of non-Euclidean geometry and the later application of non-Euclidean geometry to Einstein’s relativity.

But these mathematical and scientific developments in no way impact my thesis that mathematics is about the world. It is not only true that the fifth postulate is independent of the other four, but, in light of its measurement implications, this independence should be expected. And since all measurements require physical means, one should not expect to understand geometric relationships established by light rays (general relativity) without reference to the nature of light rays. Yet the perceptual level remains the base and relativistic corrections consist in relating such relationships to the Euclidean geometry of the perceptual level. So the first part of chapter 3 examines the context of the parallel postulate.

The measurement of area and the application of geometric proportion to trigonometric calculation is based, inescapably on the parallel postulate. In modern treatments, this relationship is hidden, even if it’s hidden in plain sight. In Euclid, this dependence is front and center and Euclid’s treatment provides a level of understanding and a perspective on area and proportion that is missing from modern treatments. Understanding area and proportion the way that Euclid did illuminates the geometry and provides an ideal theater for watching Euclid’s method in action. Elucidating these applications completes Chapter 3.